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Abstract—A continuum damage model is generalized to simulate both the progressive failure and
the formation of localization bands in brittle rock structures under both tensile and compressive
loading. The model is implemented into a finite element code to simulate the constitutive behaviour
of a number of brittle rock structures which might actually be found in the laboratory or in the
field.

I. INTRODUCTION

In an carlier paper {hereafter referred to as (1)), Singh and Digby (1989) developed a new
continuum damage model to simulate the constitutive behaviour of brittle rocks loaded
under planc strain conditions. To verify that physically satisfactory results could be obtained
from the model before it was to be implemented into a finite element code, a number of
idealized problems were first studied. The model was applied to predict the damage growth
and constitutive behaviour of infinitcly extended brittle solids loaded under plane strain
conditions. Since only infinitely extended bodies were considered in (1), it could be supposed
that the damage (due to the presence of cracks) in any given direction was uniformly
distributed throughout the body. The effect of crack closure and friction in closed cracks
could be included in the calculations performed in (I).

In the present paper, we extend the application of our damage model developed tn (1).
Thus, we now implement our model in a finite element code to study the dumage growth
and constitutive behaviour of a number of finitely extended bodies having different geo-
metries and loaded under plane strain conditions. The effect of closed cracks will be included
in the calculations. Since, in the present work, finitely extended bodies are considered, the
damage in a given direction can no longer be supposed uniformly distributed throughout
the body considered. Furthermore, in this case, the deformation of the body in the post-
peak softening range can often be accompanied by a “localization™ of the deformation into
one or perhaps a number of discrete zones which traverse the body considered. In the
present paper, we therefore also describe features which must be added to the model
developed in (I) to simulate this behaviour,

2. LOCALIZATION OF DEFORMATION

We consider how the model developed in (I) may be extended to simulate the process
of “localization of deformation™ referred to in the Introduction of the present paper. All
of the existing features of our model will be retained. A detailed description of these
(together with the conventions adopted) has already been given in (I) and will not therefore
be repeated here. We adopt the commonly accepted meaning of the term localization of
deformation by saying that in the homogeneous deformation of an initially uniform
material, non-uniform deformation may initiate and grow in one or several planar bands
under continuing conditions of equilibrium and homogeneous deformation outside the
band (see for example Rudnicki and Rice, 1975).
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2.1, Initiation of localization

Rudnicki and Rice (1975) originally investigated this phenomenon theoretically by
seeking conditions for which continued deformation (in an initially homogeneously
deformed solid) would lead to a non-uniform field in which deformation rates could vary
with position across planar (localization) bands but remain uniform outside these regions.
If terms due to increments in the co-rotational stresses are neglected, Rudnicki and Rice
{1975) then derived the following condition for initiation of a localization band with unit
normal 1:

Det (L %) =0 (i jk.l=1,2.3) (H

In egn (1). L ts the tangential stiffness matrix, and components of € and L are referred to
a fixed set of rectangular Cartesian space axes. Components of the tangential stiffness
matrix L are defined by the equations

dU.'; = L;/kldgkl Q)

The components of L possess the symmetries L, = L, and L, = L, 5 but for the
constitutive model used in the present paper. L, # Lis,-

Unfortunately, in our numerical computations {to be described later) we found that it
was very difficult to locate a state of deformation at which Rudnickt and Rice’s conditions
(1) and (2) are satisfied at cach stage of the computations. We therefore attempted to usce
an alternative criterion in which the active damage planes are the only possible sites for the
formation of localization bands within the structure considered. Thus, in the present paper,
the orientations of the normals to all possible potential planar localization bands arc
first assumed to be coincident with those to the active damage planes [the procedure for
determination of the orientation of the unit normal % to an active damage plane has been
fully explained in (I)]. We then supposed that Jocalization could be initiated at points in
the structure where under continuing deformation, the second-order work becomes zero or
negative, that is,

do,, de, <0 (3)

for given admissible strain increment components de,, (again referred to space axes).

2.2, Post-peak load -deformation behaviour

After the localization of deformation in a structure, if we continue loading then loading
also continues in the localized band but zones outside the band will continue to unload. In
other words, the deformation in the localized band increases while other regions in the
structure relax. In this process, the unloading regions of the structure release a quantity of
striin energy given by

(o -de)dV 4)

J;nlumc of the unlouding part

and the encrgy supplicd to the localized bund is given by

(¢-de)dV (5)

W, =
i’ﬂh:mc of the localirzed band

for continued loading. Equations (4) and (5) are valid for admissible strains. When the
magnitude of the cnergy released is less than the energy supplied (required). i.c.
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Iwul < I”QII’ (6)

in the structure, then it is stable under displacement-controlled loading. In other words, the
load in the structure decreases with increasing deformation. This behaviour is called *‘snap-
through™ load—deformation behaviour (curve ad in Fig. 1). If the condition

[wal > [w &)

is satisfied. then the structure is unstable even under displacement-controlled loading. Here,
a quantity of excess unloading energy

wo = (W] —|w] (8)

is available for loading the localized zone at a constant, specified deformation of the
structure (see Fig. 1). An excess of energy w, is available for dynamic loading of this
localized band. Unfortunately, dynamic behaviour cannot be simulated in a static analysis.

To circumvent this problem. one may consider the excess unloading energy w, by
artificially unloading the structure. The energy w, is then not available for loading the
localized band. In this way one avoids the dynamic situation. This type of load-deformation
behaviour is called “snap-back™. This is shown by curve abc in Fig. I. The shaded area in
the figure denotes the excess unloading energy. If the deformation at point a is maintained
constant. then the load drops suddenly from a to ¢ without any significant overall defor-
mation. The actual load-deformation path followed is abc which is of the snap-back type.
From Fig. I we also sce that if onc is not interested in the details of the equilibrium path
abc, when condition (7) is satisfied, then in displacement-controlled loading considered in
this work, cquilibrium of the structure may still be restored at point c.

The localized band is usually narrow and its width is almost independent of the size of
the structure. For example, in carthquake faulting, landstide and foundation failure, most
of the deformation is localized in a concentrated, narrow zone whose width is almost
independent of the volume of the rock mass involved in the process. Hence as indicated
above, the flux of encrgy (from that part of the structure outside the band) into a fixed,
given volume of localization band increases with the size of structure. Thus the load-
deformation behaviour in the post-peak softening range (i.c. after localization) appears to
depend on the size of the structure. The deformation in the band increases with w,. The
stress is a fixed function of strain given for example by the constitutive relation (9) in (I).
Hence, the larger the size of the structure, the greater will be the decrease in the overall
load for a given increment in overall deformation,

Load

0 Deformation

Fig. |. Load-deformation behaviour of a structure. The shaded region shows excess unloading
encrgy in the post-peak strain softening range.
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2.3. Constitutive model used for an element in which localization has been initiated

For all elements in which condition (3) i1s not satisfied, all details of damage growth
are simulated by our continuum damage model (I) in its oniginal form. For those elements
in which condition (3) for localization of deformation is satisfied. however, our constitutive
model (I) must be generalized. Thus, once condition (3) for localization of deformation
within a given element is satisfied, then the strain field within this element will no longer be
uniform. Here. a planar localization band of thickness &', say, will be formed. In our
computations, the minimum element length. b, say. will always be larger than the band
width 4, and &' is also taken to be a fixed. characteristic property of the material considered.
As mentioned earlier, active damage planes. whose normals % have known orientations
[from our earlier work (I)}. are assumed to be the only possible sites for the formation of
localization bands. Now after inequality (3) is satisfied. that is. localization within this
element has been initiated. we suppose that any further softening (due to further damage
growth) will occur only within the localization band. The other part of this element (outside
the band), we suppose, now unloads elastically. Thus. under further loading of the element.
the compliance of that part of the element outside the band remains constant and equal to
its value at the initiation of localization.

From the finite element analysis, we can calculate the average strain components ¢, in
the localized element considered by using the nodal displacements of the element. We
caleulate ¢, at the center of the element. Let Cpy. CU CHYL (G jok E= 1, 2, 3) be the
components (all referred to space axes) of the compliance tensors for the element, the
clastically unloading part of the element, and the localized band. respectively. The effective
compliance of the element may be calculated assuming that the stress is homogeneous
throughout the localized clement, that s, in particular,

[
Ul/ - G:/ . (())

We also have in this case,

) h o b “h ]
Cow=\1~- b Cout ‘/)'(':;kh (10

It follows from eqn (10) that for &' = b, when the localized band includes the complete
clement, the effective compliance of the element will be equal to that of the localized band.
The effective stress in the element is given by

(71/ = (C‘)l;kllizkl' (l l)
The stress within the localtzed band is

no_ Uy -4 o)
0’:, =(C ’)z/kll‘k/, (12)

where &' and ¢! denote the components of strain and stress tensor within the localized
band, calculated by using the constitutive relation

0':/,)' = [\’,/u(D)‘iI/) (. j.kI=1.2.3) (13)

[cqn (9) in (I)]. Now, using the above assumption of homogencity of stress within the
clement [eqn (9) above] together with cqns (11) and (12) we find that

C:[I) = Cf[’[’!q(c);;;lrlxt;n (14)
(the superscript ** — 1" in eqns (11), (12) and (14) above denotes matrix inversion). We use
the strain within the localization band, calculated from eqns (14) in the constitutive equation

(13) which describes the softening behaviour of the material within the band. This model
of localization can now be included in our original constitutive model (I).
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2.4. Dependence of computational results obtained on finite element mesh size. Restriction
on mesh size

As indicated in Sections 2.2 and 2.3 of this paper, whenever localization of deformation
is generated within one or several bands in a brittle rock structure, the results of a finite
element analysis will depend on the size of the element used in the discretization. Some kind
of element size control technique must then be developed to overcome this difficulty. In
Bazant's work (1986). the fracture energy dissipated will be independent of the element
length & for any value of b > b/, where b’ is the crack band width in Bazant's strain softening
crack band model. However, Bazant (1986) imposed the additional restriction that the
element length b should also satisfy the inequality b < 3b’. It was then found that snap-
back behaviour (see our discussion in Section 2.2) at the element level could be avoided.
Our approach is similar in principle to Bazant's. However. our method is motivated by the
observation that in the post-peak strain softening range, the deformation is localized to a
narrow band whose width 4’ is independent of the size of structure considered. In our
method, the strain in the band is calculated from eqn (14) given the element length and
band width. This calculated strain is then used in the constitutive relation. The element
length used in the region of localization in our model is also restricted to lie in the range
b < bh<3b,

A strain gradient approach has also been developed by Schreyer and Chen (1986) in
which finite elements smaller than the width of the localized band may be used. Here the
strain gradient calculated over the elements will determine the number of the elements to be
included in the band. However the strain gradient cannot be calculated in the displacement
formulated finite element analysis used in our work.

3. FINITE ELEMENT SIMULATION OF THE CONSTITUTIVE BEHAVIOUR OF FINITELY
EXTENDED BRITTLE SOLIDS LOADED UNDER PLANE STRAIN CONDITIONS

The constitutive model developed both in (I) and also in this paper has been
implemented into the finite element code NFEMP. NFEMP is a non-lincar version of the
finite clement code FEMP developed by Nilsson and Oldenburg (1983). In all of the
problems studied in this section, the body considered is loaded under plane strain conditions.
The numerical values of the appropriate material parameters [see (1)} are listed in Table L.
These are used in all of the problems studied in this section. They were obtained from
uniaxial tenston and simple shear tests on samples of a grey, medium grained granite from the
Stripa mine in central Sweden (see Shahidi et al., 1986, for further details). We denote the
applied boundary loading parameter by ““time™ and axes 01 and 02 by X'and Y, respectively.
The arrow marks at both ends of line segments in the principal stress and strain plots (for
example in Figs 3a and 3b) denote tensile components. Line segments with arrow marks
omitted denote compressive components. Arrow marks at both ends of line segments in
damage plane plots (for example in Fig. 3¢) denote actual (growing) damage (crack) planes.
In displacement vector plots (for example in Fig. 3d), arrows denote the directions of
displicements. The length of line segments in all the plots shown is proportional to the
magnitude of the quantity plotted.

Table 1. Numerical values of the constitutive parameters
used in the finite element simulations

Parameter Value

E 30.0x 10°

v 0.2
O -0.5x 10°
A, 3125

A, 1.15x10-*
A, 0.20x 10"}
D, 1.0x10-°

Modified damage growth law given by eqns (24a) and
(24b) in (I).
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Frg. 2. (1) Specimen geometry and loading direction for the problem in Section 3.1, (b} Finite

clement discretization and boundary conditions of the shaded area in (a). Shaded clements are

clements in which localization has occurred at ditferent times. {¢) Yestress vs time graphs for the

problem in Scction 3.1, Curve (1) is for the clement at point (1) and curve (2) is for the element at
point (2) shown in Fig. 2b.

3.1 A specimen loaded under tension

The specimen geometry, boundary conditions and finite clement discretization are
shown in Figs 2a and 2b. The specimen is loaded under displacement-controlled conditions
by specifying the displacement = 0.1 x 10 " * (m) x time in the Y-dircction, at the top of the
specimen as shown in Fig. 2b. We have used a time increment equal to 1 from time 0 to 8
and equal to 0.1 onwards. A characteristic localization band width {characteristic length)
of 2 mm has been used in this analysis.

The graph of Y-stress vs time for points (1) and (2) (Fig. 2b) is shown in Fig. 2c. The
results at time 9 are shown in Figs 3. At time 9 onc element, shown in Fig. 2b, becomes
localized. Here, a sudden drop in stress (load) occurs at time 9.4 for a time increment 0.1
Results at time 9.5 are shown in Figs 4.

In Figs 3. we observe that damages (cracks) initiate in regions of stress and strain
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{a) (b)

fe) (d)
tig. 3. Results at time 9 for the problem in Section 3.1. (a) Principal stress components ; (b) principal
strain components ; (¢) damage planes; (d) displucement vectors,

concentration, and the damage planes are normal to the maximum principal stress and
strain directions. At time 9, one clement localizes (softens) (cf. Fig. 2b) while the specimen
bears increasing loads (Fig. 2¢). With an increase in applied load, more elements localize,
and after the peak applied load is reached, these localized elements form a band of softening
elements (Fig. 2b). which we call a localization band. The principal strain plots at time 9.5
(Fig. 4b), after the formation of the localization band, indicate the presence of large
deformations (strain) in the band and comparatively small deformations (strain) outside
this band. The largest magnitude of the damage occurs within the localization band (Fig.
4c¢). That part of the specimen outside the band appears to translate as a rigid body (Fig.
4d). A sharp drop in load after the peak, shown in Fig. 2c, reveals that the post-peak
behaviour of the specimen is of the snap-back type described in Section 2.2), i.e. unstable
undcr displaccment control in the post-peak region. A similar type of instability has been
observed in direct tension tests on granite and sandstone specimens in the laboratory by
Shahidi et al. (1986).

3.2. Simulation of shear band formation under applied compressive loading

The specimen geometry boundary conditions and finite element discretization for the
problem described here are shown in Fig. 5. To initiate localization in the homogeneously
strained specimen, we introduce some initial finite damage within the four shaded elements
shown in Fig. 5. The spevimen is loaded under displacement-controlled conditions by
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Fig. 4. Results at time 9.5 for the problems in Section 3.1, (@) Principal stress components; (b)
principal strain components (¢} damage planes: (d) displacement vectors,

specifying a displacement = —0.1 x 10 "% (m) x time in the Y-direction at the top of the
specimen. We have used smaller time increments near the peak load.

The graph of Y-stress vs time at point (1) (Fig. 5) is shown in Fig. 6. Some results at
time 25.6, after which time a few clements have localized, are shown in Figs 7. As in the
tension experiment described in Section 3.1, we observe that from time 25.5 to 26.2 an
increasing number of elements localize, as indicated in Figs 8, while the specimen carries
an increasingly large load (Fig. 6). At time 26.2, the peak load is reached. At the next time
tncrement, the localizing clements join to form a localized band (Figs 9). The results in the
post-peak region, at time 26.3, are shown in Figs 9. Unlike the tension loading described
in Section 3.1, the localized band consists of a band whose thickness is approximately four
elements (Figs 9b.c.f), and the damage planes are approximately normal to the localization
band (Fig. 9¢). Cracks of this type associated with relative shear displacements have been
observed by Shahidi er al. (1986) in direct shear tests on intact Stripa granite specimens.
These damage planes may bé compared with observed en-echelon fissures associated with
faulting (Dennis, 1972, p. 302).



Fig. 5. Specimen geometry, boundary conditions and FE discretization for shear band simulation
under compressive loading. Shaded elements have an initial damage of 0.5 with the normal to the
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Fig. 7. Results at time 25,6 for the problem in Section 3.2, (a) Principal strain components:
{b) displacement vectors; {c) damage planes.

3.3, Failure around a rectangular tunnel excavated in a brittle rock

Figure 10 shows a cross-sectional view of a rectangular tunnel, together with the
geometry, boundary conditions and FE discretization of the tunnel. We loaded the tunnel
by applying a vertical compressive ioad (in the Y-direction) equalto — 1.0 (MNm %) x time.
This is equivalent to a Y-stress of — 1.0 (MPa) x time at a point in the rock mass remote
from the tunnel. We do not consider gravitational loading in this case. We have used time
increment 9 up to time 54, and | afterwards, At time 54, a few clements begin to localize
(Fig. 11). In these elements the X-stress and strain are tensile. The localization in these
elements (shown in Fig. 12d) is therefore of the type described in Section 3.1 for the case
of tensile loading. As time increases, more elements gradually localize in the compressive
stress field around the tunnel as shown in Fig. 11. The results at time 57 are shown in Figs
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12 and those at time 59, after which time we could not continue the numerical loading, are
shown in Figs 13. The stresses and strains in the elements at points (1), (2) and (3) (Fig.
10) have been monitored continuously. We observed a peak Y-stress of — 114.0 MPa in the
clement at point (3) at time 58. The Y-stress at that point dropped to —46.8 MPa at time
59. The stresses at point (1), remote from the tunnel opening, continued to increase.
However, comparing Figs 12¢ and 13c, we observe that a part of the region immediately
surrounding the localization zone unloads.

This results in the snap-back type of instability (discussed in Section 2.1) at the tunnel
wall. Violent failure of a rock mass in a tunnel due to large induced stresses results from
this type of instability (Jaeger and Cook, 1979). Comparing the stress plots at times 57
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Fig. 9 Results at time 26.3 for the problem in Section 3.2. (a) Principal stress components;
(b) principal strain components; (c) deformed and undeformed specimen; (d) displaccment vectors;

(¢) damage planes; (f) damage contours.
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Fig. 10. Boundary conditions and FE discretization for the failure analysis around a rectangular
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Fig. 1. Localized and completely failed elements at different times for the problem in Scction 3.3,

(Figs 12a.,b) and (Figs 13a.b), we observe that the region of stress concentration moves
into the rock mass from the tunnel wall as the rock fails. Contour plots of the damage at
time 59 in Figs [3e.f show the extent of damage around the tunnel.

We were unable to continue loading of the tunnel beyond time 59, since in a few
clements (marked *F in Fig. 11) the magnitude of the damage had reached a very large
value. This resulted in “ill-conditioning™, i.e. an almost singular behaviour of the overall
cffective elastic compliance matrix of the material in those elements.
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Fig. 13. Results at time 59 for the problem in Section 3.3. (a) Principal stress components:
(b) stress- ¥ contours: (c) principal strain components ; (d) damage planes: (¢) damage magnitude
contours, 0-80; (f) damage magnitude contours, 0-5.
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4. DISCUSSION

In the present paper. we have implemented our constitutive model developed in (D)
into a finite element code to simulate the progressive failure of brittle rock structures
loaded under plane strain conditions. The structures considered resemble those which might
actually be encountered in the laboratory or in the field. Our constitutive model originally
developed in (I) can now also be used to simulate the formation of localization bands in
brittle rock structures under both tensile and compressive loading. From the numerical
simulations performed it will be noticed. as in (I). that a series of material parameter
“sensitivity” studies for a range of cracked materials under given loading conditions was
not performed. Once again. we believe that equally large or even far greater contrasts in
the constitutive behaviour may be observed by studying a given cracked solid subjected to
different applied loading conditions. It will also be noted that we have been unable to
resolve completely the problem of dependence of our computational results on the mesh
size. This must await further work. Nevertheless, we do believe that our constitutive model
simulates many of the essential observed teatures of progressive failure in brittle rock
structures at least in a qualitatively correct manner.
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